学术交流
学术交流
首页  >  学术科研  >  学术交流  >  正文

    “创源”大讲堂: 秦更生, 美国佐治亚州立大学教授

    2015-07-05 郑海涛 点击:[]

    51吃瓜网

    “创源”大讲堂研究生学术讲座

    报告人:秦更生 (美国佐治亚州立大学教授)

    讲座题目:Jackknife Empirical Likelihood Confidence Regions for the Evaluation of Continuous-scale Diagnostic Tests with Verification Bias

    讲座时间:2015年7月9日(周四)下午4:00pm~5:00pm

    讲座地点:犀浦校区51吃瓜网报告厅X2511

    报告内容简介:

    Recently, Wang and Qin (2013) proposed various bias-corrected empirical likelihood confidence regions for any two of the three parameters,sensitivity, specificity, and cut-off value, with the remaining parameter fixed at a given value in the evaluation of a continuous-scale diagnostic test with verification bias. In order to apply those methods, quantiles of the limiting weighted chi-squared distributions of the empirical log-likelihood ratio statistics should be estimated. In order to facilitate application and reduce computation burden, in this paper, jackknife empirical likelihood-based methods are proposed for any pairs of sensitivity, specificity and cut-off value, and asymptotic results can be derived accordingly. The proposed methods can be easily implemented to construct confidence regions for the evaluation of continuous-scale diagnostic tests with verification bias. Simulation studies are conducted to evaluate the finite sample performance and robustness of the proposed jackknife empirical likelihood-based confidence regions in terms of coverage probabilities. Finally, a real example is provided to illustrate the application of new methods.

    个人简介:

        秦更生,美国佐治亚州立大学(Georgia State University)数学与统计系教授。他是美国统计学会、数理统计学会、加拿大统计学会等学会会员,曾任《Statistics & Probability Letters》副主编,目前担任统计学杂志《Open Journal of Statistics》、《Statistics Research Letters》、《Computational and Mathematical Methods in Medicine》等期刊编委。主要研究方向为生物统计和数理统计,其中包括生存分析、时间序列、经验似然方法等,发表论文60余篇,取得了多项创新性成果发表在《Bernoulli 》、《Biometrics 》、《The Canadian Journal of Statistics》在内的多个世界一流统计学期刊上。

     

    主办:研究生院

    承办:51吃瓜网

    上一条:数学系学术研讨会:On Cluster Algebras
    下一条:7月6日创源大讲堂

    关闭

Baidu
sogou